Measuring Nonresponse

OPRE Panel on Survey Nonresponse

Andy Peytchev, PhD

Outline

• We know that nonresponse can lead to nonresponse bias in estimates. How do we measure it?

- Approaches to measuring nonresponse bias
 - Conceptual overview (adapted from Groves and Brick, 2005)
- Other considerations

Main areas for recent and future development

Why Measure Nonresponse Bias

The more obvious

- Response rate is a poor indicator of nonresponse bias
- Low response rates provide greater threat of nonresponse bias

The less obvious

- Inform confidence in inferences made from the data
- Inform changes in the survey design to reduce nonresponse bias
- Inform postsurvey adjustments

Measuring Nonresponse Bias

- Nonresponse is a counterfactual problem
- Multiple methods to obtain estimates of nonresponse bias, none is perfect
 - Each method makes some assumptions that cannot be tested
- Ideally, employ multiple methods
- Groves and Brick conveniently categorized them

1.1 Comparisons to External Sources

- Need a survey(s) or Census that has:
 - Higher response rate, without other major deficiencies
 - Same survey estimates
- Directly compare weighted sample estimates to external estimates
- Consider the differences between the studies to evaluate the extent that differences in estimates can be attributed to nonresponse

1.1 Comparisons to External Sources

Strengths

Provides an independent estimate based on a different protocol

Limitations

- Differences in estimates could be due to other sources of error
- Estimates from external source may be more biased

1.2 Experimental Comparison to a Superior Protocol

- Identify likely largest sources of nonresponse error
- Modify survey protocol to minimize the effect of these sources
- Conduct survey under current/intended and under modified protocols to sample replicates

1.2 Experimental Comparison to a Superior Protocol

Strengths

- Differences can be better attributed to nonresponse
- Allows identification of causal factors affecting nonresponse
- Can inform improvements to the survey design (reduction in error)

Limitations

- May not have identified or been able to manipulate the major factors
- Can be prohibitively expensive if a stand-alone experiment

2. Nonresponse Bias for Variables on Full Sample

- Directly compare respondents to nonrespondents on variables available for the entire sample
 - Sampling frame
 - Administrative data
 - Interviewer observations

2. Nonresponse Bias for Variables on Full Sample

Strengths

Direct estimate of bias for selected sample

Limitations

- Seldom possible for key survey statistics
- Affected by other sources of error (e.g., register data, interviewer observations)
- These variables are often used in postsurvey adjustments

3. Nonresponse Bias for Variables Available for Subset

- Compute difference between respondents and nonrespondents for part of sample with auxiliary data
 - Earlier data collection (e.g., household screening)
 - Follow-up data collection (e.g., NRFU)

3. Nonresponse Bias for Variables Available for Subset

Strengths

- Provides sample-based estimate
- Often done for key survey statistics

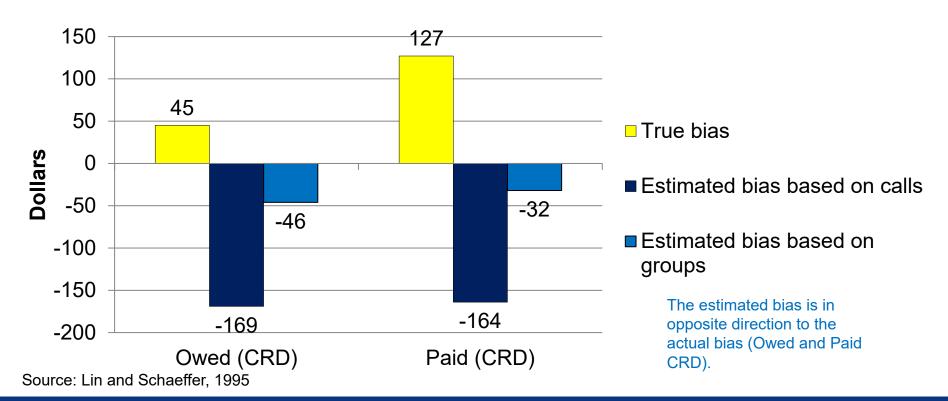
Limitations

Remaining uncertainty in nonresponse bias estimate

4. Outcomes Related to Nonresponse Bias

- Define assumptions about link between respondents and nonrespondents
 - Level of effort
 - Response rates by subgroups
- Examine variability in response outcome across groups/continuum

4. Outcomes Related to Nonresponse Bias


Strengths

- Easy to perform
- Can inform about the potential for nonresponse bias

Limitations

Untestable assumptions

4. Effort - Number of Calls: Minnesota Parent Survey: Child Support Payments—Divorced Mothers Sample

5. Comparison of Alternative Adjustments

- Create adjustments that vary in the assumptions they make
 - Theoretically (e.g., initial refusals under a continuum of resistance model)
 - Empirically
 - Estimation method (e.g., propensity models)
 - Covariates used (e.g., interviewer observations)

5. Comparison of Adjustments

Strengths

- Shows sensitivity/robustness to assumptions made about nonresponse
- Easy

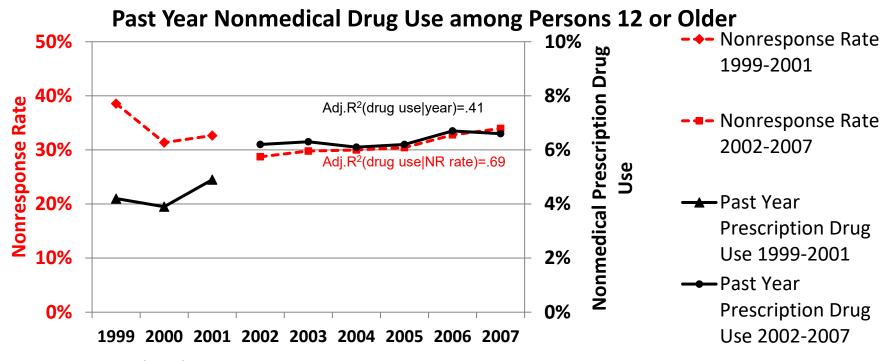
Limitations

- May not know which adjustment has the best estimate of nonresponse bias
 - All may be poor estimates
- Good if they agree, ambiguous interpretation if they do not agree

6. Comparison to Prior Survey Iterations

- Compute survey estimates from each implementation of a repeated crosssectional survey
- Compute noncontact rates, refusal rates, response rates, for each implementation
- Summarize any correlates of nonresponse from each implementation

6. Comparison to Prior Survey Iterations

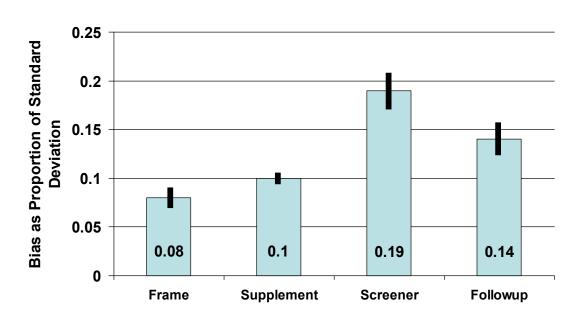

Strengths

- Estimates produced (often) using replications of the same protocol
- Allows for estimation of nonresponse bias variance for stable characteristics

Limitations

- Limited to indicate changes in nonresponse bias over time
- There could be a common cause for nonresponse and "true" survey values

6. Comparison to Prior Survey Iterations Example: National Survey of Drug Use and Health



Source: Peytchev, A. (2013).

Measuring Nonresponse

OTHER CONSIDERATIONS

Nonresponse Bias by Method of Estimation

The magnitude of the estimated nonresponse bias seems associated with the method of nonresponse bias estimation

Method Used to Estimate Nonresponse Bias

Source: Groves and Peytcheva, 2008

Note: Based on 566 standardized estimates from 44 studies

Measuring Nonresponse

FUTURE DIRECTIONS

Observations in Several Studies

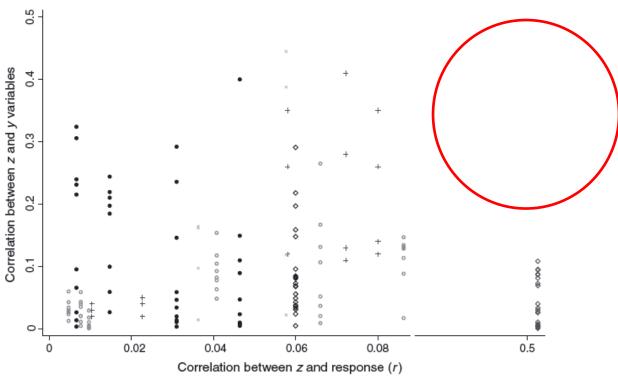


Fig. 1. Relationship between the correlation of z- and y-variables and correlation of z and response in five surveys (all correlations are shown as absolute values): +, UMTRI; ×, MEPS; \bigcirc , ESS; \bigcirc , ANES; \bigcirc , NSFG

Kreuter et al. (2010). Using proxy measures and other correlates of survey outcomes to adjust for non-response: examples from multiple surveys. JRSS-A.

Current and Future Needs

- Incorporate measurement of nonresponse bias into the study design
- Identify and collect more and relevant auxiliary information
 - Administrative data
 - Augment sampling frames
 - Design interviewer observations
 - Include measures at different stages of the study design
- Conduct periodic or concurrent studies to measure nonresponse bias
- o Balance the need to measure nonresponse bias with the need to reduce it

References

Biemer, P., & Peytchev, A. (2011). A Standardized Indicator of Survey Nonresponse Bias Based on Effect Size. Paper presented at the International Workshop on Household Survey Nonresponse, Bilbao, Spain.

Groves, R. M., & Magilavy, L. (1984). *An Experimental Measurement of Total Survey Error.* Paper presented at the American Statistical Association.

Groves, R. M., & Peytcheva, E. (2008). The Impact of Nonresponse Rates on Nonresponse Bias: A Meta-Analysis. *Public Opinion Quarterly*, 72(2), 167-189.

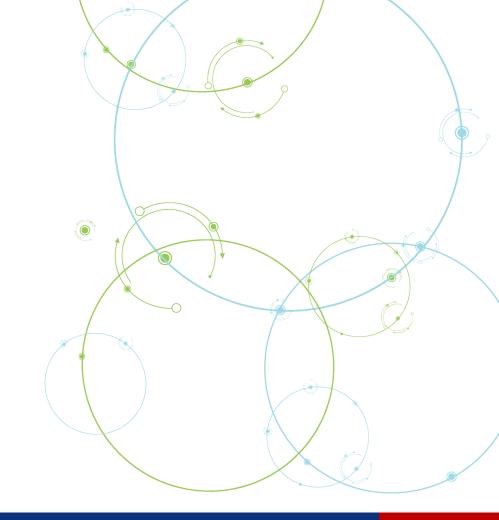
Kreuter, F., Olson, K., Wagner, J., Yan, T., Ezzati-Rice, T. M., Casas-Cordero, C., Lemay, M., Peytchev, A., Groves, R. M., Raghunathan, T. E. (2010). Using Proxy Measures and Other Correlates of Survey Outcomes to Adjust for Nonresponse: Examples from Multiple Surveys. *Journal of the Royal Statistical Society, Series A (Statistics in Society)*, 173(2).

Lin, I.-F., & Schaeffer, N. C. (1995). Using Survey Participants to Estimate the Impact of Nonparticipation. *Public Opinion Quarterly*, *59*, 236-258.

Little, R. J. A., West, B. T., Boonstra, P. S., & Hu, J. (2019). Measures of the Degree of Departure from Ignorable Sample Selection. *Journal of Survey Statistics and Methodology, 8*(5), 932-964.

Peytchev, A. (2013). Consequences of Survey Nonresponse. The ANNALS of the American Academy of Political and Social Science, 645(1), 88-111.

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: Wiley.


Schouten, B., Cobben, F., & Bethlehem, J. (2009). Indicators for the representativeness of survey response. Survey Methodology, 35(1), 101-114.

Wagner, J. (2010). The Fraction of Missing Information as a Tool for Monitoring the Quality of Survey Data. *Public Opinion Quarterly*, 74(2), 223-243.

26 CONFIDENTIAL

Thank you

Andy Peytchev apeytchev@rti.org

27 CONFIDENTIAL