Managing research and data for reproducibility and transparency

Margaret Levenstein, ICPSR Director

Office of Planning, Research and Evaluation
2019 Open Science Methods Meeting
ICPSR

Founded in 1962 by 22 universities, now consortium of ~800 institutions world-wide

Focus on social and behavioral science data, broadly defined

Current holdings

- 11,000 studies, quarter million files
- 1500 are restricted studies, almost always to protect confidentiality
- Bibliography of Data-related Literature with 80,000 citations

Approximately 60,000 active MyData (“shopping cart”) accounts

Thematic collections of data about addiction and HIV, aging, arts and culture, child care and early education, criminal justice, demography, health and medical care, and minorities
What is reproducibility?

Can another researcher obtain the same results, using the same data and code?

 Can they access the data and code?
 If they can, are their results the same?
 If not, why not?

Replication versus reproduction

 Same substantive inference with other data, specification
Why does reproducibility matter?

1. Knowledge building
 - Is it true?
 - Challenges of p-hacking, especially in a big data world
 - Why is it true?

2. Credibility
 - How do others know it is true?
 - Traditional refereeing process and imprimatur of the academy
 - No longer enough
 - Internet and post-modernism undermined gatekeeper role
 - Confidential and found data confound even the referees

The “crisis of reproducibility” undermines the use of science for evidence-based policy
 - Psychology, economics, but also health, others
Sharing is caring

Reproducibility requires sharing data and code
 Respect for study participants
 Minimize burden and increase impact
 Incremental knowledge building
 Trust and credibility

Plan for data sharing
 Preregister research
 Data management plan
 Consent statement
Resources for sharing

Preregistration for education effectiveness studies
https://sreereg.icpsr.umich.edu/
Resources for sharing

Recommended Informed Consent Language for Data Sharing

Language to Avoid

Promises in the informed consent can appear to limit an investigator’s ability to share data with the research community. In reality, investigators can inform study participants that they are scientists with an obligation to protect confidentiality and still share the study data with the broad scientific community. Many effective means exist to create public-use data files or share restricted-use data files under controlled conditions. That is, data can be modified to reduce the risk of disclosure or shared with additional safeguards while preserving their value for science.

Model Language

Here are two model statements investigators may use in informed consents to describe protection of confidentiality that also allows data sharing.

Sample 1. Study staff will protect your personal information closely so no one will be able to connect your responses and any other information that identifies you. Federal or state laws may require us to show information to university or government officials (or sponsors), who are responsible for monitoring the safety of this study. Directly identifying information (e.g., names, addresses) will be safeguarded and maintained under controlled conditions. You will not be identified in any publication from this study.

Sample 2. The information in this study will be used only for research purposes and in ways that will not reveal who you are. Federal or state laws may require us to show information to university or government officials (or sponsors), who are responsible for monitoring the safety of this study. You will not be identified in any publication from this study.

Known Concerns and Recommended Alternatives

https://www.icpsr.umich.edu/icpsrweb/content/data_management/confidentiality/conf-language.html
Temptation is to promise that no one else will see the data
➢ Or even that the data will be destroyed
➢ This is the direction GDPR has taken

Promise instead to create the most scientific impact while protecting confidentiality
➢ Separate and encrypt Personally Identifiable Information (PII)
➢ Restrict use to scientific and evidence-building purposes
➢ Never reveal information about individual or share with those who try to use to re-identify individuals
Resources for sharing

https://youtu.be/0m5kgYsPwe0
For you old schoolers

Why are DMP important?

Think about data documentation and sharing at the beginning of the project

➢ Improves the research
➢ Makes research reproducible
➢ Reduces cost and increases quality of shared data

Communicates to others

➢ Participants
➢ Funders
➢ Archive
Key elements of DMP

Description of collection (sample, methods)
Short-term storage
Metadata (data about data)
 ➢ Recommendation: standardized, machine actionable
Provenance (especially if you are combining data)
Intellectual property rights
 ➢ Open access means specific licenses
Access policy
Long term preservation
Where to share?

FAIR data
 Findable, Accessible, Interoperable, Reusable
Put your data where it will be
 Found by others
 Preserved in the face of technological change
 Safe for provenance and confidentiality
 Uniquely and persistently identified
 Cited
LINKAGE LIBRARY

Maintaining datasets to support the data linkage community
Enable researchers to share linked (or linkable) data and linkage strategies

➢ Algorithms, code

Compare approaches across projects, datasets, disciplines

➢ Improve linkage practices
➢ Improve transparency

Build data community

➢ Threaded commenting among community members
When to prepare?

Now!

A well-prepared data collection “contains information intended to be complete and self-explanatory” for future users.
Guide to Social Science Data Preparation and Archiving

Best Practice Throughout the Data Life Cycle • 5th edition

http://www.icpsr.umich.edu/files/ICPSR/access/dataprep.pdf
Is the data collection complete, accurate, and well-documented?
Essential Descriptive Elements

Basic front matter
Variable level details
Methodology
DOCUMENTATION: FRONT MATTER

Title

GENERAL SOCIAL SURVEYS, 1972-2010 CUMULATIVE CODEBOOK
(Codebook for the Machine-Readable Data File
General Social Surveys, 1972-2010)

Principal Investigator
Co-Principal Investigator
Co-Principal Investigator
Senior Research Scientist
Research Assistants

Tom W. Smith
Peter V. Marsden
Michael Hout
Jibum Kim
Jaesok Son
Nicholas R. Nunez
Matt Gross
Jerome Gutterman
Tamila Hill
Faith R. Laken
Beatriz Marquez
Joshua Gagne

http://dx.doi.org/10.3886/ICPSR31521.v1

Principal Investigator(s)
INTRODUCTION

DATA COLLECTION DESCRIPTION

MONITORING THE FUTURE: A CONTINUING STUDY OF AMERICAN YOUTH, 2009 is conducted by the University of Michigan’s Institute for Social Research and receives its core funding under grants from the National Institute on Drug Abuse. (The responsible investigators are: Lloyd D. Johnston, principal investigator; Jerald G. Bachman, Patrick M. O’Malley, and John Schulenberg, co-principal investigators.) The research project is unusually comprehensive in several respects: surveys are conducted annually on an ongoing basis; the samples are large and nationally representative; and the subject matter is very broad, encompassing some 1400 variables per year.

The Monitoring the Future Project is designed to explore changes in many important values, behaviors, and lifestyle orientations of contemporary American youth. Two general types of tasks may be distinguished. The first is to provide a systematic and accurate "description" of the youth population of interest in a given year, and to quantify the direction and rate of the changes taking place among them over time. The second task, more analytic than descriptive, involves the "explanation" of the relationships and trends observed to exist.

Description

Documentation: Variable-level Details

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Code</th>
<th>Response</th>
<th>Variable Name</th>
<th>Type/Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>19. On average, what percentage of the students in 1993 who were enrolled in each grade at the beginning of the school year were retained in the same grade (that is, held back) for the next school year? (For any grade that is not included in your school, circle ‘N.A.’) (WRITE IN PERCENT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. 7th grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0</td>
<td>No 7th grade students retained.</td>
<td>A19A</td>
<td>num 3</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>% of students who were retained—range 01-30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>997</td>
<td>legitimate skip/not applicable. School does not have this grade or is an ungraded school.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>missing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variable Name

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Code</th>
<th>Response</th>
<th>A19A</th>
<th>Type/Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0</td>
<td>No 7th grade students retained.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>% of students who were retained—range 01-30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>997</td>
<td>Legitimate skip/not applicable. School does not have this grade or is an ungraded school.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Documentation: Variable-level Details

Variable Label

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Code</th>
<th>Response</th>
<th>Variable Name</th>
<th>Type/Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0</td>
<td>No 7th grade students retained.</td>
<td>A19A</td>
<td>mm 3</td>
</tr>
<tr>
<td>51</td>
<td>%</td>
<td>% of students who were retained—range 01-30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>997</td>
<td>legitimate skip/not applicable. School does not have this grade or is an ungraded school.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>missing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Variable Type

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Code</th>
<th>Response</th>
<th>A19A</th>
<th>Type/Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0</td>
<td>No 7th grade students retained.</td>
<td></td>
<td>min 3</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>% of students who were retained—range 01-30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>997</td>
<td>legitimate skip/not applicable. School does not have this grade or is an ungraded school.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>missing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Documentation: Variable-level Details

19. On average, what percentage of the students in 1993 who were enrolled in each grade at the beginning of the school year were retained in the same grade (that is, held back) for the next school year? (For any grade that is not included in your school, circle “N.A.”) (WRITE IN PERCENT)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Code</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0</td>
<td>No 7th grade students retained.</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>% of students who were retained—range 01-30%</td>
</tr>
<tr>
<td>80</td>
<td>997</td>
<td>Legitimate skip/not applicable. School does not have this grade or is an ungraded school.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Missing</td>
</tr>
</tbody>
</table>

Variable Name: A19A

Type/Length: min 3
Values

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Code</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0</td>
<td>No 7th grade students retained.</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>% of students who were retained—range 01-30%</td>
</tr>
<tr>
<td>80</td>
<td>997</td>
<td>legitimate skip/not applicable. School does not have this grade or is an ungraded school.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>missing</td>
</tr>
</tbody>
</table>
Value Labels

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Code</th>
<th>Response</th>
<th>Variable Name</th>
<th>Type/Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0</td>
<td>No 7th grade students retained.</td>
<td>A19A</td>
<td></td>
</tr>
</tbody>
</table>
Documentation: Variable-level Details

Missing Data

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Code</th>
<th>Response</th>
<th>Variable Name</th>
<th>Type/Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0</td>
<td>No 7th grade students retained.</td>
<td>A19A</td>
<td>mm 3</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>% of students who were retained—range 01-30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>97</td>
<td>legitimate skip/not applicable. School does not have this grade or is ungraded school</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>missing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Documentation: Variable-level Details

Summary Statistics

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Code</th>
<th>Response</th>
<th>Variable Name</th>
<th>Type/Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. On average, what percentage of the students in 1993 who were enrolled in each grade at the beginning of the school year were retained in the same grade (that is, held back) for the next school year? (For any grade that is not included in your school, circle "N.A." (WRITE IN PERCENT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. 7th grade</td>
<td></td>
<td>No 7th grade students retained.</td>
<td>A19A</td>
<td>min 3</td>
</tr>
<tr>
<td>33</td>
<td>0</td>
<td>% of students who were retained—range 01-30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>legitimate skip/not applicable. School does not have this grade or is an ungraded school.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>997</td>
<td>missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICPSR
Documentation: Variable-level Details

Constructed Variables

15. Siblings

Variable name: sibname1 - sibname7

Sibling name. Information about siblings was submitted to the Pension Board when a recruit needed to prove his age in order to receive an age-dependent pension. Sibling names were collected from family Bibles and other sources. If the Pension Board conducted a census search, the generated document also contained sibling names and ages. Sibling names were also extracted from affidavits and depositions. This variable was cleaned according to the rules for names (see General Information, V.A.2). Comments included the relationship of the sibling to the recruit, especially in the cases when it was a step- or half-sibling, as well as dates and places. SIS and BRO were expanded to SISTER and BROTHER, and 1/2 was changed to HALF.

ILTOT31 – Illegal Activities – Wave 3

The total score was calculated by taking the mean of the z-scores of the following items: rill2ar, ril4ar, ril6ar, ril7ar, ril8ar, ril11ar, ril13ar, ril14ar, ril15ar, ril17ar, ril22ar. Eight of the 11 items need valid responses for a score to be calculated. To address the skewed distribution of the scale, a transformed score was computed by adding 1 to the mean and taking the natural log of that value.
Documentation: Variable-level Details

Notes

Skip Patterns
Documentation: Methodology

Sample design: A description of how the cases that appear in the study were selected, including details about target populations, sampling frames, sample sizes, sampling errors, and sampling methods.

Data collection procedures: The methods used to collect the data (e.g., telephone, mail, computer-assisted). Where applicable, this includes the exact instructions and protocols used by interviewers when they collected the data.

Data processing: The activities and quality checks performed on the data collection to generate the final data products from the raw collected data. If files were merged, a full description of the process should be provided.
Documentation: Methodology

Weighting: Where applicable, a description of the criteria for using weights in the analysis of a data collection, including how the weights were created, all weighting formulae or coefficients, a definition of their elements, and an indication of how the formulae are applied to the data.

Confidentiality issues: Where applicable, a discussion of any confidentiality issues in the data, as well as the steps taken to mitigate disclosure risk.
Other Documentation

Questionnaire
User Guide
Handbook
Manual
Report
Table
User Agreement
Errata
Useful Resources: Description

ICPSR, “Guide to Codebooks”

Institute for Health and Care Research Quality Handbook
http://www.emgo.nl/kc/codebook/

Princeton University Data and Statistical Services, “How to Use a Codebook”
http://dss.princeton.edu/online_help/analysis/codebook.htm

UCLA Social Science Data Archive, “Codebooks”
Key Learnings

Ensuring reproducibility will increase the impact of your research
Reproducibility requires sharing data and code
 Where it is preserved and accessible
 Where it is documented and discoverable
Sharing data and code is facilitated by a DMP
Data Jeff wants you to share!