Plausible Priors Precede Persuasive Posteriors

OPRE Innovative Methods Meeting:
Bayesian Methods for Social Policy Research and Evaluation

October 19, 2017

Mariel Finucane • Shira Mitchell • John Deke
We Need Plausible Priors – Example

• Federal grants fund 100 locally developed programs

• Truth (unknown to researcher or policy maker):
 – 10 programs have meaningful effects
 – 90 programs have no effect

• An RCT is conducted for 1 randomly selected program

• Statistical testing with alpha = 0.05

• Study power: the study is big enough that it has an 80% chance of detecting a meaningful effect
We Need Plausible Priors – Example: Pick a Study Out of a Barrel

100 studies COULD be conducted, but only 1 will be. That 1 study will (in expectation) fall into 1 of 4 categories:

- 8 Green = significant and truly effective ($power$)
- 2 Black = insignificant but effective ($1 - power$)
- 85 Grey = insignificant and truly ineffective ($1 - \alpha$)
- 5 Red = significant but ineffective (α)

\[
P(\text{sig impact is not real}) = \frac{5 \text{ red}}{5 \text{ red} + 8 \text{ green}} = 38\%
\]
Incorporating Priors is Now Computationally Feasible

Stan...

... is new.
... is fast.
... is beginner friendly.
... makes it easy to extend models.
... has an active developer/user community.
Bayes Rule
Bayes Rule

\[\text{Likelihood} + \text{Prior} = \text{Posterior} \]

Take the estimate based on data from your study…

… and put it in the context of external information…

… to get a better answer to your policy question.
Bayes Rule

\[\text{Likelihood} + \text{Prior} = \text{Posterior} \]

Take the estimate based on data from your study… … and put it in the context of external information… … to get a better answer to your policy question.

Estimate = $34
95% CI (-$7, $75)
p = 0.10
Bayes Rule

\[\text{Likelihood} + \text{Prior} = \text{Posterior} \]

Take the estimate based on data from your study…

… and put it in the context of external information…

… to get a better answer to your policy question.

Estimate = $34

95% CI (-$7, $75)

p = 0.10

95% sure that

-$40 < \text{impact} < $40
Bayes Rule

Likelihood + Prior = Posterior

Take the estimate based on data from your study…

… and put it in the context of external information…

… to get a better answer to your policy question.

Estimate = $34
95% CI (-$7, $75)
p = 0.10

95% sure that
-$40 < \text{impact} < $40

Estimate = $16
95% CI (-$11, $43)

87% chance that\n\text{Impact} > $0
Bayes Rule

\[\text{Likelihood} + \text{Prior} = \text{Posterior} \]

Take the estimate based on data from your study…

… and put it in the context of external information…

… to get a better answer to your policy question.

Estimate = -$9
95% CI (-$21, $3)
p = 0.15
Bayes Rule

\[\text{Likelihood} + \text{Prior} = \text{Posterior} \]

Take the estimate based on data from your study…

Estimate = -$9
95% CI (-$21, $3)
p = 0.15

… and put it in the context of external information…

95% sure that
-$40 < \text{impact} < $40

… to get a better answer to your policy question.
Bayes Rule

Likelihood + Prior = Posterior

Take the estimate based on data from your study…

… and put it in the context of external information…

… to get a better answer to your policy question.

Estimate = -$9
95% CI (-$21, $3)
p = 0.15

95% sure that -$40 < impact < $40

Estimate = -$8
95% CI (-$20, $4)

91% chance that impact < 0
A “Flat Prior” Fails the Sniff Test

\[
\text{Likelihood} + \text{Prior} = \text{Posterior}
\]

Take the estimate based on data from your study… … and put it in the context of external information… … to get a better answer to your policy question.

Estimate = $34
95% CI (-$7, $75)
p = 0.10
A “Flat Prior” Fails the Sniff Test

Likelihood + Prior = Posterior

Take the estimate based on data from your study… … and put it in the context of external information… … to get a better answer to your policy question.

Estimate = $34
95% CI (-$7, $75)
p = 0.10

Probability that
-$50 < \text{impact} < 0
= \text{probability that}
-$1050 < \text{impact} < -$1000
A “Flat Prior” Fails the Sniff Test

Take the estimate based on data from your study…

Estimate = $34
95% CI (-$7, $75)
p = 0.10
→ 1-sided p=0.05

… and put it in the context of external information…

Probability that
-$50 < \text{impact} < 0
= \text{probability that}
-$1050 < \text{impact} < -$1000

… to get a better answer to your policy question.

Estimate = $34
95% CI (-$7, $75)
5% chance that impact < $0
The True Prior
The True Prior

Get the prior right →

• What group of questions is your research question a random draw from?

• The true prior is the distribution of true impacts in that group.
The True Prior

Get the prior right →

- What group of questions is your research question a random draw from?
- The true prior is the distribution of true impacts in that group.

IAH CPC MCCD etc...
The True Prior

Get the prior right ➔
• What group of questions is your research question a random draw from?
• The true prior is the distribution of true impacts in that group.

➔ Get the right posterior
• “There’s an 80% chance that CPC saved at least $4 PBPM.”
• “There’s an 80% chance that IAH saved at least $50 PBPM.”
• “There’s an 80% chance that MCCD reduced hospitalizations by at least 10%.”
• …Lots more P(X) = 0.80 statements….

➔ Relative frequency of true statements = 0.80
A Prior for the Impact of “Bright Beginnings”
A Prior for the Impact of “Bright Beginnings”

In My Dreams: True Impacts of Bright Beginnings Replications
A Prior for the Impact of “Bright Beginnings”

In My Dreams: True Impacts of Bright Beginnings Replications

In Reality: WWC Impact Estimates
Plausible Priors Precede Persuasive Posteriors

• We need plausible priors
• A flat prior fails the sniff test
• Don’t let the perfect be the enemy of the good
• Own your prior
• Do sensitivity analyses
• Get more data

“We view much of the recent history of Bayesian inference as a set of converging messages from many directions… pointing toward the benefits of including real, subject-matter-specific, prior information in order to get more stable and accurate inferences.”

Gelman et al., 2017,

 – Gelman, A. (2016). The problems with p-values are not just with p-values. *The American Statistician, supplemental material to the ASA statement on p-values and statistical significance, online discussion.*

• www.andrewgelman.com
 – “Hidden dangers of noninformative priors” Nov 21, 2013
 – “Interpreting posterior probabilities in the context of weakly informative priors” June 28, 2015
 – “The general problem I have with noninformatively-derived Bayesian probabilities is that they tend to be too strong” May 1, 2015
 – “What are some situations in which the classical approach gives worse results than a Bayesian approach?” Nov 13, 2013
 – “What is the “true prior distribution”? A hard-nosed answer” April 23, 2016
Appendix 1.

Plausible Priors Precede Persuasive Posteriors
Plausible Priors Precede Persuasive Posterior

OH

CPC Impact ($ PBPM)

Prior
Likelihood
Posterior

22% chance that impact > $50

VS.

CPC Impact ($ PBPM)

Prior
Likelihood
Posterior

<1% chance that impact > $50
Appendix 2.
The Easy Case – A Prior Across Regions/Subgroups/Quarters
Get the prior right →

- What group of questions is your research question a random draw from?
- The true prior is the distribution of true impacts in that group.

Get the right posterior

![Graph showing CPC Impact ($ PBPM)](image)
Appendix 3.
What Happens When We Use the Wrong Prior?
What Happens When We Use the Wrong Prior?

- Draw impact from a true prior
 - \(\theta_s \sim N(0.1, 0.4^2) \)
- Simulate data given the drawn impact
 - \(y_s \sim P(y|\theta_s) \)
- Perform Bayesian inference assuming the wrong prior
 - \(P^*(\theta|y_s) \propto P(y_s|\theta)P^*(\theta) \)
- How bad is the resulting inference?
 - Compare \(P(\theta > L|y_s) \) to \(P^*(\theta > L|y_s) \)
What Happens When We Use the Wrong Prior?

- Draw impact from a true prior
 - $\theta_s \sim N(0.1, 0.4^2)$
- Simulate data given the drawn impact
 - $y_s \sim P(y|\theta_s)$
- Perform Bayesian inference assuming the wrong prior
 - $P^*(\theta|y_s) \propto P(y_s|\theta)P^*(\theta)$
- How bad is the resulting inference?
 - Compare $P(\theta > L|y_s)$ to $P^*(\theta > L|y_s)$
What Happens When We Use the Wrong Prior?

- Draw impact from a true prior
 - $\theta_s \sim N(0.1, 0.4^2)$
- Simulate data given the drawn impact
 - $y_s \sim P(y|\theta_s)$
- Perform Bayesian inference assuming the wrong prior
 - $P^*(\theta|y_s) \propto P(y_s|\theta)P^*(\theta)$
- How bad is the resulting inference?
 - Compare $P(\theta > L|y_s)$ to $P^*(\theta > L|y_s)$
What Happens When We Use the Wrong Prior?

- Draw impact from a true prior
 - \(\theta_s \sim N(0.1, 0.4^2) \)
- Simulate data given the drawn impact
 - \(y_s \sim P(y|\theta_s) \)
- Perform Bayesian inference assuming the wrong prior
 - \(P^*(\theta|y_s) \propto P(y_s|\theta)P^*(\theta) \)
- How bad is the resulting inference?
 - Compare \(P(\theta > L|y_s) \) to \(P^*(\theta > L|y_s) \)

The true prior is \(N(0.1, 0.4^2) \).

Well-calibrated

Conservative

Anti-conservative
What Happens When We Use the Wrong Prior?

- Draw impact from a true prior
 - $\theta_s \sim N(0.1, 0.4^2)$
- Simulate data given the drawn impact
 - $y_s \sim P(y|\theta_s)$
- Perform Bayesian inference assuming the wrong prior
 - $P^*(\theta|y_s) \propto P(y_s|\theta)P^*(\theta)$
- How bad is the resulting inference?
 - Compare $P(\theta > L|y_s)$ to $P^*(\theta > L|y_s)$

The true prior is $N(0.1, 0.4^2)$. The graph shows the average stated probability that impact > 0.2 for different sample sizes and assumed prior means, comparing well-calibrated, anti-conservative, and conservative results.
What Happens When We Use the Wrong Prior?

- Draw impact from a true prior
 - $\theta_s \sim N(0.1, 0.4^2)$
- Simulate data given the drawn impact
 - $y_s \sim P(y|\theta_s)$
- Perform Bayesian inference assuming the wrong prior
 - $P^*(\theta|y_s) \propto P(y_s|\theta)P^*(\theta)$
- How bad is the resulting inference?
 - Compare $P(\theta > L|y_s)$ to $P^*(\theta > L|y_s)$

The true prior is $N(0.1, 0.4^2)$. Well-calibrated

Mathematica Policy Research

35