Simulated Instruments for Addressing Descriptive and Causal Policy Questions

Vivian C. Wong
David Martin
University of Virginia

Coady Wing
Indiana University
Research Context

• Over the last 20 years of education reform, the major questions have been about how to hold schools “accountable” for student achievement, and whether accountability policies “work.”
 • Pundits criticize NCLB as a “one-size-fits-all” approach to improving student achievement
 • No Child Left Behind replaced by Every Student Succeeds Act

• Even now, empirical research on NCLB has been challenged
 • Unclear how states responded to NCLB federal mandate?
 • Unclear the full impact of NCLB?
Overview of approach

• Proposed method provides **descriptive information about implementation of state policies**
 • Synthesizes states’ decisions about a set of policies into a single quantitative measure
 • Provides a quantitative summary for each state, for each year of the policy
 • Is independent of population characteristics of the state (helpful for impact analysis!)

• **Measure helps address questions such as:**
 • How did states implement policies (for a specific year)? How much variation was there across states and over time?
 • What is the impact of states’ implementation of the policy on outcomes?

• **The measure is applied to NCLB context, but may work in other contexts**
 • “Simulated instruments” originally introduced to describe states’ marginal tax rates
 • Gruber and colleagues applied approach to examine effects of Medicaid expansion
 • We are using to describe and examine state pre-K eligibility rules
Under NCLB, schools were held “accountable” based on whether subgroups and schools met states’ annual Adequate Yearly Progress (AYP) Requirements:

Requirements: Percent Proficiency, Participation and Graduation rates, Safe Harbor, and Confidence Interval, and Confidence Interval around Safe Harbor Targets

Schools either:
Met/Exceeded requirements and made AYP; or
Failed requirements and failed AYP
Variation in State Accountability Rules

Snapshot of States AYP rules for 2007-08

<table>
<thead>
<tr>
<th></th>
<th>Pennsylvania</th>
<th>Alaska</th>
<th>Tennessee</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation requirement</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
</tr>
<tr>
<td>Minimum subgroup size</td>
<td>40</td>
<td>20</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>State AMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elem Math</td>
<td>56</td>
<td>66.1</td>
<td>86</td>
<td>50</td>
</tr>
<tr>
<td>Elem ELA</td>
<td>63</td>
<td>77.2</td>
<td>89</td>
<td>60</td>
</tr>
<tr>
<td>Confidence Interval (CI)</td>
<td>95%</td>
<td>99%</td>
<td>95%</td>
<td>No</td>
</tr>
<tr>
<td>Safe Harbor (SH) Rule</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SH-CI</td>
<td>75%</td>
<td>75%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Actual AYP School Failure Rates</td>
<td>28%</td>
<td>41%</td>
<td>20%</td>
<td>15%</td>
</tr>
</tbody>
</table>
Implementation of States’ Accountability Policies

• States differed on accountability “stringency” under NCLB
 • Stringent rules made it harder for schools to meet annual accountability requirements
 • Less stringent rules made it easier for schools to make AYP rules

• One (inferior) option: Use the percent of schools in each state that failed AYP as stringency measure for the year

<table>
<thead>
<tr>
<th></th>
<th>Pennsylvania</th>
<th>Alaska</th>
<th>Tennessee</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual AYP School Failure Rates</td>
<td>28%</td>
<td>41%</td>
<td>20%</td>
<td>15%</td>
</tr>
</tbody>
</table>
Actual % AYP School Failure Rate as a State Stringency Measure

- But states’ AYP failure rates depend on the difficulty of states’ standards and the population characteristics of the state.
- A “good” measure of state implementation stringency separates states’ policies from characteristics of schools and students in the state.
Simulated AYP Failure Rates as a Stringency Measure

Snapshot of States AYP rules for 2007-08

<table>
<thead>
<tr>
<th></th>
<th>PA</th>
<th>AK</th>
<th>TN</th>
<th>TX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>requirement</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
</tr>
<tr>
<td>Minimum subgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>40</td>
<td>20</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>State AMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elem Math</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>66.1</td>
<td>86</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Elem ELA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>77.2</td>
<td>89</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Confidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval (CI)</td>
<td>95%</td>
<td>99%</td>
<td>95%</td>
<td>No</td>
</tr>
</tbody>
</table>
| Fixed sample of | 27%| 54%| 70%| 33%
| schools’ simulated | | | | |
| failure rates | | | | |

- Begin by taking a fixed sample of schools and their “input characteristics”
- Ask: “What proportion of the fixed sample of schools would fail AYP if the same schools were held to accountability standards in other states?”
- **Now:**
 - Differences in simulated stringency rates are based on differences in state rules, and
 - **Not** on differences in state characteristics
 - High simulated failure rates mean rules are more stringent, lower failure rates mean it’s easier for schools to make AYP
Calculating *Simulated* School AYP Failure Rates*

1. Using publicly available information, **code all AYP policies** for every state and year between 2003 and 2011

2. Using database of all AYP policies, **construct an “AYP calculator” that determines whether a school fails AYP in a particular state and year**

3. Feed “fixed baskets” of students/schools into calculator to **construct measures of AYP stringency for each state and year**

Basic idea: For a fixed sample of schools, what fraction of schools would meet AYP standards across different states and years?

* Similar to method used by Gruber & Simon (2007) to evaluate Medicaid expansion on crowd-out effects
Incorporating State Test Difficulty in Measure

- Evidence of variation in test difficulty across states and time, especially compared to national benchmark NAEP (NCES State Mapping reports) (Taylor et al. 2010)

- NCES maps state proficiency cutoffs onto NAEP scale scores for 4th and 8th grade students

- We define the “fixed sample” as students in the NAEP sample and compare their NAEP scale scores to NAEP equivalent state cutoff scores
 - States with easier tests have lower NAEP equivalent cutoff scores
 - States with harder tests have higher NAEP equivalent cutoff scores

- Now, simulated stringency rates incorporate state accountability rules & test difficulty
Advantages and Disadvantages of Simulated Failure Rates as Implementation Measure

• **Advantages of Measure**
 1. Synthesizes states’ decisions about accountability policies into a single quantitative measure of stringency
 2. Provides an annual measure for each state’s accountability rules
 3. Is independent of population characteristics of the state (useful for causal analysis!)

• **Limitations of Measure**
 1. May not account for all AYP rules that are unobserved
 • Validation checks indicate calculator performs well
 2. Measure may be sensitive to characteristics of fixed sample
 • Check results with alternative fixed samples
Under NCLB, accountability stringency ratcheted up rules but also became less discrepant.
Using the Stringency Measure for Impact Evaluations

Experimental ideal

• Random assignment stringency rates to states

\[Y_{st} = \beta_0 + \beta_1 Stringency_{st} + \epsilon_{st} \]

Where, \(Y \) is schools’ actual AYP failure rates for state \(s \) at time \(t \).
Combine Measure with Differences in Differences Strategy

• Simulated failure rates ensure that population characteristics (schools and students) are independent from state accountability stringency

• But other factors could be related to states’ adoption of accountability policies, and their outcomes (e.g. states may have a strong tradition of teacher unions)

• Settle for differences-in-differences approach with the simulated stringency rate, and

\[Y_{ist} = \frac{-}{1} A_{st} + X_{st} + s + t + e_{ist} \]

state and year fixed effects, and a vector of time varying covariates
Advantages and Limitations

• Advantages
 • The strength here is the introduction of quantitative measure that provides state-by-year summaries of policy decisions
 • Helps that the measure is independent of population characteristics of state
 • State and Year fixed effects address other omitted confounders that do not change differentially across states and time

• Disadvantages
 • Assumptions for traditional “differences-in-differences” still apply
 • States would follow a “common path” through time absent of variations in accountability stringency
 • Similar checks as regular DiD: Inclusion of time varying covariates, balancing tests, assess pre-intervention trends, time varying treatment effects
Extensions

• Gruber and colleagues applied method for looking at expansion of Medicaid eligibility on a host of different outcomes

• Method maybe useful in other areas of education, but has not been applied
 • Example: We are currently developing a calculator for examining the impacts of state preK expansion on labor market outcomes

• Method requires careful documentation, coding, and recording of state policies across time
 • Coding preK eligibility policies much more challenging than NCLB context

• Availability of administrative data of state rules may provide many opportunities for describing, understanding, and evaluating policy impacts!
Extra Slides
Issue 1: Incorporating Test Difficulty in the Measure

- NCES maps state proficiency cutoffs onto NAEP scale scores for 4th and 8th grade students
- We define the “fixed sample” as students in the NAEP sample and compare their NAEP scale scores to NAEP equivalent state cutoff scores
 - States with easier tests have lower NAEP equivalent cutoff scores
 - States with harder tests have higher NAEP equivalent cutoff scores
- Now, simulated stringency rates incorporate state accountability rules & test difficulty
Issue 2: Does Not Accurately Reflect All Accountability Rules

The calculator:

• Accounts for all AYP rules about:
 • Test difficulty, participation rates, proficiency thresholds, other academic indicators (e.g. attendance, graduation, writing, and science), minimum subgroup size, confidence intervals, safe harbor, confidence intervals around safe harbor, multiyear averages

• But does not yet account for:
 • Growth models, performance indexes, alternative/modified tests for students with disabilities and Limited English Proficiency students

We currently omit 7 states from the analyses
Validation of AYP Calculator

- For AYP calculator to work, it should mimic state AYP policies accurately for determining whether schools make AYP or not
- We validate our calculator by feeding actual state populations of schools through the calculator, and comparing our predicted pass rates to states’ reports of actual pass rates
- We have done this for Pennsylvania and Texas for two years each. More validations states to come...

<table>
<thead>
<tr>
<th></th>
<th>Actual AYP Pass Rates</th>
<th>Predicted AYP Pass Rates Based on our AYP Calculator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennsylvania (2004)</td>
<td>86%</td>
<td>86%</td>
</tr>
<tr>
<td>Pennsylvania (2008)</td>
<td>72%</td>
<td>73%</td>
</tr>
<tr>
<td>Texas (2004)</td>
<td>83.4%</td>
<td>84.8%</td>
</tr>
<tr>
<td>Texas (2008)</td>
<td>66.1%</td>
<td>64.2%</td>
</tr>
</tbody>
</table>
Issue 3: Check robustness of measure and results to alternative fixed samples

- Main results are from the NAEP fixed sample
 - Allows us to incorporate test difficulty in stringency measure (imperfectly)
 - NAEP includes national representative sample of schools
- But there are limitations of the NAEP fixed sample
 - Stringency measure based on 4th and 8th grade standards only
 - NAEP equivalent scale scores not available every year, so we interpolated when possible

- Alternative sample: Pennsylvania schools
 - PA schools included heterogeneous samples with inputs needed for calculator
 - Allowed us to include all grades (including HS) in the fixed sample
 - No need to interpolate proficiency standards for states
- Limitations of PA fixed sample
 - PA fixed sample does not address differences in test difficulty across states