Treatment Costs Among Adults With Serious Mental Illness: Influences of Criminal Justice Involvement and Psychiatric Diagnoses

The Promises and Challenges of Administrative Data in Social Policy Research
Washington D.C., October 1, 2015

Allison G. Robertson, PhD, MPH
Duke University School of Medicine
Department of Psychiatry & Behavioral Sciences
Division of Social & Community Psychiatry
allison.gilbert@duke.edu
Collaborators & Sponsors

Duke University Medical Center
- Allison Robertson, PhD, MPH
- Jeffrey Swanson, PhD
- Marvin Swartz, MD
- Michele Easter, PhD

Connecticut Dept. of Mental Health and Addiction Services (DMHAS)/UConn SSW
- Hsiu-Ju Lin, PhD
- Linda Frisman, PhD

This research has been funded by National Institute of Mental Health, K01 Career Development Award (Grant #K01MH100544).
Scope of the problem of criminal justice involvement among persons with serious mental illness (SMI)

• 11 million adults in the U.S. (5%) with SMI

• 25% have a co-occurring substance use disorder

• Nearly 37% uninsured, 40% receive no treatment

Kessler et al, 2005; SAMHSA, 2011
Scope of the problem of criminal justice involvement among persons with serious mental illness (SMI)

- Each year, approximately 2 million persons with SMI in U.S. jails
 - Many continue to cycle repeatedly through the criminal justice system

- About 1 in 5 incarcerated individuals suffer from a serious mental illness
 - 15% of male inmates; 30% of female inmates
 - Once incarcerated, persons with SMI stay far longer

- Among those with SMI, at least 75% have co-occurring substance use disorders

- Each year, hundreds of thousands of adults in the U.S. are released from incarceration

Macro trends affecting criminal justice and mental health system capacity, utilization, and cost

- Number of state and county psychiatric hospital beds declined 63% between 1980 and 2000
- Declining budgets for behavioral healthcare in state systems
- Number of persons incarcerated in state correctional facilities increased over 300% during the same period
- Jails/prisons described as today’s de facto psychiatric institutions
How much does CJ involvement of SMI population cost states?

• No comprehensive estimates of costs of criminal justice involvement among persons with SMI

• Connecticut is an ideal state in which to study costs of CJ involvement for SMI population
 – Progressive service systems with innovative programs for justice-involved persons with mental illness
 – Demographically diverse population
 – State jails and prisons under one central authority
 – Complementary administrative data with common identifiers allowing matching across information systems
 • Exact matches
 • Probabilistic matches
Study population: Dept of Mental Health clients with serious mental illness

• Records extracted for 25,133 adult clients of CT’s Department of Mental Health and Addiction Services meeting criteria:
 – chart diagnosis of schizophrenia spectrum disorder or bipolar disorder
 – served in the publicly-operated or funded system of care
 – 2-year window of observation (SFYs 06-07)
Cross-agency data matching and merging for 25,133 SMI individuals

- Dept. of Mental Health and Addiction Services
 - Detailed administrative records of hospital and residential facility stays, outpatient treatment encounters, case management services, forensic services
- Dept. of Social Services
 - Medicaid claims and payment amounts
- Dept. of Public Safety
 - Arrests, detailed statutory charges, dispositions
- Dept. of Correction
 - Incarceration days, parole days, and halfway-house days
- Court Supported Services Division (Judicial)
 - Probation episodes, civil commitment, jail diversion program
Service unit cost information

• Medicaid paid claims provide direct cost information for health services covered under Medicaid

• Agency service costs provided or estimated from budget information supplied to project team

• Some costs (e.g., arrest) were estimated using national estimates from relevant studies in the literature
Connecticut CJ Cost Study: Proportion of SMI sample with any criminal justice system involvement in 2 years

Total sample N=25,133

- Not CJ-involved: n=18,229 (73%)
- CJ-involved: n=6,904 (27%)
Connecticut CJ Cost Study:
Proportion with any involvement by category, entire sample (N=25,133)

72.9% of the entire sample had no CJ involvement.
27.5% of the entire sample had any CJ involvement.

- No CJ involvement (n=18,229): 72.5%
- Arrest (n=4,250): 61.6%
- Incarceration (n=3,968): 57.5%
- Probation (n=3,299): 47.8%
- Jail diversion (n=1,973): 28.6%
- Parole (n=230): 3.3%
- Forensic evals (n=508): 7.4%
- Forensic hosp (n=231): 3.3%
Connecticut CJ Cost Study: Summary costs by category and sample

<table>
<thead>
<tr>
<th>Service Category</th>
<th>Total cost for category</th>
<th>Cost per person involved</th>
<th>Total cost for category</th>
<th>Cost per person involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment subtotal</td>
<td>$200,117,342</td>
<td>$28,986</td>
<td>$379,481,642</td>
<td>$20,817</td>
</tr>
<tr>
<td>Criminal justice subtotal</td>
<td>$122,779,540</td>
<td>$17,784</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Total across categories</td>
<td>$322,896,882</td>
<td>$46,770</td>
<td>$379,481,642</td>
<td>$20,817</td>
</tr>
</tbody>
</table>

Research questions

• Wide range of involvement in public treatment and criminal justice systems and associated costs given individuals’ treatment needs, service utilization, and risk of offending vary significantly

(1) To what extent does CJ involvement influence community behavioral health treatment utilization and costs?

(2) How do individuals’ clinical characteristics interact with CJ involvement to influence costs?

• Provide early insights about extent to which behavioral health treatment costs in this population are driven by system characteristics, justice involvement, and individual illness trajectories
Utilization & cost measures

CJ involvement measures:
- Convicted arrests
- Incarcerations
- Probation, parole
- Jail diversion program
- Forensic evaluations
- Forensic hospitalizations (competency restoration & NGRI)

Treatment measures:
- Inpatient psychiatric hospitalizations
- Outpatient MH & SA treatment services
- Emergency department visits
- Psychotropic medications
Analytic methods

• OLS regression models to estimate net effect of CJ involvement and, separately, combined effects of justice involvement and clinical diagnoses on behavioral health treatment costs

• Specification tests to determine the best model fit

• Two sets of risk factor combinations:
 – CJ involvement status and substance use disorder diagnosis
 – CJ involvement status and major psychiatric diagnosis (schizophrenia or bipolar disorder)

• All models controlled for age, sex, race-ethnicity, and time out of the community during incarceration
Sample characteristics of adults in CT with SMI, by CJ status & primary psychiatric diagnosis

<table>
<thead>
<tr>
<th></th>
<th>CJ-involved</th>
<th>Not-CJ-involved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schizophrenia</td>
<td>Bipolar</td>
</tr>
<tr>
<td></td>
<td>(n=2,581; 37.38%)</td>
<td>(n=4,323; 62.62%)</td>
</tr>
<tr>
<td>N</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>Age (mean, SD)</td>
<td>37.1 (10.68)</td>
<td>34.9 (10.35)</td>
</tr>
<tr>
<td>Sex</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Male</td>
<td>1,981 76.75%</td>
<td>2,496 57.74%</td>
</tr>
<tr>
<td>Female</td>
<td>600 23.25%</td>
<td>1,827 42.26%</td>
</tr>
<tr>
<td>Race</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>White</td>
<td>1,019 39.5%</td>
<td>2,907 67.2%</td>
</tr>
<tr>
<td>African Ame</td>
<td>956 37.0%</td>
<td>600 13.9%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>515 20.0%</td>
<td>648 15.0%</td>
</tr>
<tr>
<td>Other</td>
<td>91 3.5%</td>
<td>168 3.9%</td>
</tr>
<tr>
<td>SUD Diagnosis</td>
<td>1,689 65.4%</td>
<td>2,823 65.3%</td>
</tr>
</tbody>
</table>

Chi-square test for differences in proportions, t-test for differences in means:
* Significant at 5% level; ** significant at 1% level; *** significant at 0.1%
Sample characteristics of adults in CT with SMI, by CJ status & primary psychiatric diagnosis

<table>
<thead>
<tr>
<th>CJ-involved</th>
<th>Not-CJ-involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schizophrenia (n=2,581; 37.38%)</td>
<td>Schizophrenia (n=9,746; 53.46%)</td>
</tr>
<tr>
<td>Bipolar (n=4,323; 62.62%)</td>
<td>Bipolar (n=8,483; 46.54%)</td>
</tr>
<tr>
<td>Total (n=6,904)</td>
<td>Total (n=18,229)</td>
</tr>
<tr>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>Age (mean, SD)</td>
<td>37.1 (10.68)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1,981 76.75%</td>
</tr>
<tr>
<td>Female</td>
<td>600 23.25%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>1,019 39.5%</td>
</tr>
<tr>
<td>African Am</td>
<td>956 37.0%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>515 20.0%</td>
</tr>
<tr>
<td>Other</td>
<td>91 3.5%</td>
</tr>
<tr>
<td>SUD Diagnosis</td>
<td>1,689 65.4%</td>
</tr>
</tbody>
</table>

Chi-square test for differences in proportions, t-test for differences in means:
* Significant at 5% level; ** significant at 1% level; *** significant at 0.1%

CJ group more likely to have bipolar disorder than no CJ group
<table>
<thead>
<tr>
<th></th>
<th>CJ-involved</th>
<th></th>
<th></th>
<th>Not-CJ-involved</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schizophrenia</td>
<td>Bipolar</td>
<td>Total (n=6,904)</td>
<td>Schizophrenia</td>
<td>Bipolar</td>
<td>Total (n=18,229)</td>
</tr>
<tr>
<td></td>
<td>(n=2,581; 37.38%)</td>
<td>(n=4,323; 62.62%)</td>
<td></td>
<td>(n=9,746; 53.46%)</td>
<td>(n=8,483; 46.54%)</td>
<td></td>
</tr>
<tr>
<td>N (%)</td>
</tr>
<tr>
<td>Age (mean, SD)</td>
<td>37.1 (10.68)</td>
<td>34.9 (10.35) ***</td>
<td>35.7 (10.52)</td>
<td>45.7 (13.29)</td>
<td>41.0 (13.94) ***</td>
<td>43.5 (13.80) ***</td>
</tr>
<tr>
<td>Sex</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Male</td>
<td>1,981 76.75%</td>
<td>2,496 57.74%</td>
<td>4,477 64.85%</td>
<td>5,411 66.46%</td>
<td>8,447 46.34%</td>
<td>11,529 63.25%</td>
</tr>
<tr>
<td>Female</td>
<td>600 23.25%</td>
<td>1,827 42.26%</td>
<td>2,427 35.15%</td>
<td>4,302 33.54%</td>
<td>9,782 53.66%</td>
<td>11,584 53.66%</td>
</tr>
<tr>
<td>Race</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>White</td>
<td>1,019 39.5%</td>
<td>2,907 67.2% ***</td>
<td>3,926 56.87%</td>
<td>5,821 72.28%</td>
<td>11,529 63.25% ***</td>
<td>16,350 66.51% ***</td>
</tr>
<tr>
<td>African Ame</td>
<td>956 37.0%</td>
<td>600 13.9% ***</td>
<td>1,556 22.54%</td>
<td>1,708 17.3%</td>
<td>3,398 13.15% ***</td>
<td>5,106 13.15% ***</td>
</tr>
<tr>
<td>Hispanic</td>
<td>515 20.0%</td>
<td>648 15.0% ***</td>
<td>1,163 16.85%</td>
<td>1,484 15.2%</td>
<td>2,708 14.86% **</td>
<td>4,192 14.86% **</td>
</tr>
<tr>
<td>Other</td>
<td>91 3.5%</td>
<td>168 3.9% NS</td>
<td>259 3.75%</td>
<td>732 7.5%</td>
<td>862 10.16% ***</td>
<td>1,594 8.74% ***</td>
</tr>
<tr>
<td>SUD Diagnosis</td>
<td>1,689 65.4%</td>
<td>2,823 65.3% NS</td>
<td>4,512 65.35%</td>
<td>2,527 25.9%</td>
<td>2,656 31.3% ***</td>
<td>5,183 28.4% ***</td>
</tr>
</tbody>
</table>

Chi-square test for differences in proportions, t-test for differences in means:

* Significant at 5% level; ** significant at 1% level; *** significant at 0.1%

CJ group was younger than no CJ group.
Sample characteristics of adults in CT with SMI, by CJ status & primary psychiatric diagnosis

<table>
<thead>
<tr>
<th></th>
<th>CJ-involved</th>
<th>Not-CJ-involved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schizophrenia</td>
<td>Bipolar</td>
</tr>
<tr>
<td></td>
<td>(n=2,581; 37.38%)</td>
<td>(n=4,323; 62.62%)</td>
</tr>
<tr>
<td>Age (mean, SD)</td>
<td>37.1 (10.68)</td>
<td>34.9 (10.35) ***</td>
</tr>
<tr>
<td>SUD Diagnosis</td>
<td>1,689 65.4%</td>
<td>2,823 65.3%</td>
</tr>
<tr>
<td></td>
<td>5,183 28.4%</td>
<td>5,183 28.4%</td>
</tr>
<tr>
<td>Sex</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Male</td>
<td>1,981 76.75%</td>
<td>2,496 57.74%</td>
</tr>
<tr>
<td>Female</td>
<td>600 23.25%</td>
<td>1,827 42.26%</td>
</tr>
<tr>
<td>Race</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>White</td>
<td>1,019 39.5%</td>
<td>2,907 67.2% ***</td>
</tr>
<tr>
<td>African Ame</td>
<td>956 37.0%</td>
<td>600 13.9% ***</td>
</tr>
<tr>
<td>Hispanic</td>
<td>515 20.0%</td>
<td>648 15.0% ***</td>
</tr>
<tr>
<td>Other</td>
<td>91 3.5%</td>
<td>168 3.9% NS</td>
</tr>
<tr>
<td>Total</td>
<td>6,904</td>
<td>8,483</td>
</tr>
</tbody>
</table>

Chi-square test for differences in proportions, t-test for differences in means:
* Significant at 5% level; ** significant at 1% level; *** significant at 0.1%

Men made up majority of CJ group; women were majority of the no CJ group.
Sample characteristics of adults in CT with SMI, by CJ status & primary psychiatric diagnosis

<table>
<thead>
<tr>
<th></th>
<th>CJ-involved</th>
<th>Not-CJ-involved</th>
<th>Total (n=18,229)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schizophrenia (n=2,581; 37.38%)</td>
<td>Bipolar (n=4,323; 62.62%)</td>
<td>Schizophrenia (n=9,746; 53.46%)</td>
</tr>
<tr>
<td>N (%)</td>
<td>N (%)</td>
<td>Total (n=6,904)</td>
<td>N (%)</td>
</tr>
<tr>
<td>Age (mean, SD)</td>
<td>37.1 (10.68)</td>
<td>34.9 (10.35)</td>
<td>35.7 (10.52)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Male</td>
<td>1,981 76.75%</td>
<td>2,496 57.74%</td>
<td>4,477 64.85%</td>
</tr>
<tr>
<td>Female</td>
<td>600 23.25%</td>
<td>1,827 42.26%</td>
<td>2,427 35.15%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>White</td>
<td>1,019 39.5%</td>
<td>2,907 67.2%</td>
<td>3,926 56.87%</td>
</tr>
<tr>
<td>African Ame</td>
<td>956 37.0%</td>
<td>600 13.9%</td>
<td>1,556 22.54%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>515 20.0%</td>
<td>648 15.0%</td>
<td>1,163 16.85%</td>
</tr>
<tr>
<td>Other</td>
<td>91 3.5%</td>
<td>168 3.9%</td>
<td>259 3.75%</td>
</tr>
<tr>
<td>SUD Diagnosis</td>
<td>1,689 65.4%</td>
<td>2,823 65.3%</td>
<td>4,512 65.35%</td>
</tr>
</tbody>
</table>

Chi-square test for differences in proportions, t-test for differences in means:
* Significant at 5% level; ** significant at 1% level; *** significant at 0.1%
Predicted mean treatment costs by combined risk factors – CJ involvement and psychiatric diagnosis

Model 1: No risk factor combinations

Model 2: Combinations by CJ involvement and SUD diagnosis

Model 3: Combinations by CJ involvement and primary diagnosis
Predicted mean treatment costs by combined risk factors – CJ involvement and psychiatric diagnosis

CJ group = 27% higher costs than no CJ group

Model 1: No risk factor combinations
Model 2: Combinations by CJI and SUD diagnosis
Model 3: Combinations by CJI and primary diagnosis
Predicted mean treatment costs by combined risk factors – CJ involvement and psychiatric diagnosis

Model 1: No risk factor combinations

Model 2: Combinations by CJ and SUD diagnosis

Model 3: Combinations by CJ and primary diagnosis

- Mean total forensic hospital costs
- Mean total treatment costs
Among those with no CJ, having a SUD raised treatment costs nearly 50%.
Predicted mean treatment costs by combined risk factors – CJ involvement and psychiatric diagnosis

But among those with CJ, having a SUD had almost no effect on costs
Predicted mean treatment costs by combined risk factors – CJ involvement and psychiatric diagnosis

- Model 1: No risk factor combinations
- Model 2: Combinations by CJ and SUD diagnosis
- Model 3: Combinations by CJ and primary diagnosis

- Mean total forensic hospital costs
- Mean total treatment costs
Predicted mean treatment costs by combined risk factors – CJ involvement and psychiatric diagnosis

Among those without CJ, adults with schiz had costs that were 3.3 times higher than those with bipolar.
Predicted mean treatment costs by combined risk factors – CJ involvement and psychiatric diagnosis

Costs for CJ-involved adults with schiz were 70% higher than for those with schiz and no CJ involvement.
Predicted mean treatment costs by combined risk factors – CJ involvement and psychiatric diagnosis

Model 1: No risk factor combinations
Model 2: Combinations by CJI and SUD diagnosis
Model 3: Combinations by CJI and primary diagnosis

CJ-involved with schiz had costs that were 5 times higher than CJ-involved with bipolar.
Predicted mean treatment costs by combined risk factors – CJ involvement and psychiatric diagnosis

- **Model 1: No risk factor combinations**
 - Avg forensic hosp cost = $30,528
 - ($307K for those w/any)

- **Model 2: Combinations by CJ and SUD diagnosis**
 - Avg forensic hosp cost = $1,694
 - ($170K for those w/any)

- **Model 3: Combinations by CJ and primary diagnosis**
Treatment costs: strong influence of schizophrenia among the CJ-involved

- CJ-involved adults with schizophrenia had disproportionate use of forensic hospitalizations, most commonly for incompetency to stand trial but also for NGRI, or other forensic evaluations performed for an offender’s trial.

- Individuals with schizophrenia and other psychotic disorders have more risk factors for forensic hospitalizations than those with mood disorders:
 - higher risk of incompetency findings
 - less likely to be restored to competency once found incompetent
 - undergo longer related forensic hospitalizations

- Highly consistent with the forensic hospitalization experience we found among the adults in our study.
Policy relevance

• **Mental illness life-course story:** Differences in costs between those with and w/o justice involvement partly a story of mental illness, generally higher degrees of disability and use of high-cost care among persons with schizophrenia

• **Systems story:** Distributions of treatment costs also represent patterns of individuals’ movement through the public treatment and CJ systems and how those systems yield different access to needed care

• Competency evaluations described as a “back door” into psychiatric hospitals

• More focus needed on how the public treatment and justice systems can coordinate to reduce risk and costs for justice-involved adults with schizophrenia
 – possible alternatives to high-cost, often lengthy forensic hospitalizations (e.g., outpatient programs for competency restoration), prevention efforts upstream
Analyzing these administrative data: The challenges

- Clinical diagnoses from admin data aren’t as reliable as comprehensive clinical assessments
- Applied a static, global diagnosis – time-varying would have been beyond scope of project time and resources
 - Not a major limitation knowing these disorders are chronic and life-long; would be more limiting if studying mild-mod MH disorders that may be limited to a few episodes
- Medication *utilization* data ≠ medication *adherence* data
- Medicaid claims don’t capture Medicare cost sharing
- Duplication of services when represented in both Medicaid and DMHAS – requires painstaking de-duplication to avoid double-counting
- DMHAS and Medicaid costs aren’t apples-to-apples comparison
Analyzing these administrative data: Opportunities and successes

• Able to collect and merge data from a wide range of CJ-related agencies and understand how that CJ involvement influenced public behavioral health clients’ service use and costs
 – Would be infeasible to carry out primary collection for this comprehensive a set of data, for 25K+ individuals

• Administrative data avoid reporting, recall bias of service use and CJ events by participants

• CT’s unified CJ system allows tracking through jails and prisons

• Allowed us to connect various system- and individual-level characteristics to identify an important influence on treatment costs that can inform policy making
Thank you