Complier Average Causal Effect (CACE)

Booil Jo
Stanford University

Methodological Advancement Meeting
Innovative Directions in Estimating Impact

Office of Planning, Research & Evaluation
Administration for Children and Families
Washington DC, September 6-7, 2012
Randomized controlled trial (RCT)

- Gold Standard – strong causal inference (evidence) with the least bias based on random assignment of treatments and blinding.
- Typically compares an experimental treatment to a standard treatment or to a placebo – there are at least two groups of subjects.
- Random assignment results in unbiased distribution of confounding variables (e.g., gender, age, education). Blinding results in unbiased distribution of placebo effect. Treatment+placebo – placebo = treatment effect
Possible Complications

• There could be many expected/unexpected complications that may undermine the validity of intervention effect estimates *despite randomization*:

 • Treatment noncompliance
 • Missing data (attrition, dropout, nonresponse)
 • Interference (within and across treatment groups)
 • Our desire to understand the intervention mechanism (mediation)
 • More...

• Our inference may vary substantially depending on how and how well these complications are handled.
Treatment Noncompliance

• Even with successful randomization and double blinding, estimating causal effects of treatments can be complicated by noncompliance.

• Noncompliance causes analysis complications because compliance status is often incompletely observed – can be seen as a missing data problem.

• Different conclusions may be reached about the effect of the same treatment depending on how noncompliance is dealt with in the analyses.
Treatment Noncompliance

- ITT Analysis: \((A+B)\) vs. \((a+b)\)
- As-Treated Analysis: \((A)\) vs. \((B+a+b)\)
- Per-Protocol Analysis: \((A)\) vs. \((a+b)\)
Example: Johns Hopkins School Intervention Study

• A randomized study designed to improve academic achievement and to reduce early behavioral problems (Ialongo et al., 1999).

• Among students assigned to the control condition, treatment receipt status could not be observed.

• In the Family-School Partnership intervention condition, parents were asked to implement 66 take-home activities.

• When the receipt of intervention treatment is defined as completing about 2/3 of activities (45 out of 66), about 47% of kids in the intervention condition properly received the intervention treatment.
Intention to Treat (ITT) Principle

• Trust the balance (comparability) based on random assignment
• Compare groups as randomized (as intended)
 • Compare means, proportions, trajectories, etc.
• Gold standard for analyzing data from RCTs
• ITT analysis presents a fair comparison and provides unbiased estimates of overall effectiveness of the treatment (in the absence of other complications).
Potential Outcomes Approach
(e.g., Neyman, 1923; Rubin, 1978, 1980...)

• The effect of treatment is defined based on an idealized (potential) situation, in which each individual’s outcome is simultaneously observed under all compared conditions.

• $Y_i(1)$: potential outcome for individual i when assigned to the treatment condition ($Z = 1$)

• $Y_i(0)$: potential outcome for individual i when assigned to the control condition ($Z = 0$)

• $Y_i(1) - Y_i(0)$: the effect (ITT) of treatment assignment for individual i
Causal Interpretation of ITT Effect

• The individual level treatment effect, $Y_i(1) - Y_i(0)$, is interpreted as causal given that the only cause of the difference is the treatment assignment status.

• The individual level treatment effect $Y_i(1) - Y_i(0)$ generally cannot be identified.

• The causal effect of treatment assignment can be defined at the average (population) level: $\mu_1 - \mu_0$

• The average causal effect $\mu_1 - \mu_0$ can be identified under certain conditions.
1. Ignorability of Treatment Assignment

• Key assumption that opens up possibilities of causal inference at the average level based on observed data.

• Treatment assignment is independent of the potential outcomes (given the observed covariates) – automatically satisfied in randomized experiments

• Individuals assigned to different treatment conditions have similar characteristics (comparable).

• Another critical assumption that makes identification of causal treatment effects possible.
 • SUTVA I: potential outcomes for each person are unaffected by the treatment assignment of other individuals – “no interference”
 • SUTVA II: there is only one version of each treatment (who delivers the treatment does not affect the potential outcomes)
Interest in Treatment Efficacy

• As-treated and per-protocol analyses do not present a fair comparison and the resulting estimate cannot be interpreted as the causal effect of treatment.

• When ITT analysis is used, treatment efficacy tends to be understated by including individuals who did not take the treatment (considered conservative).

• Sometimes our interest is in estimating the effect of treatment when it is actually received.
Complier Average Causal Effect (CACE)

• A widely used alternative method of estimating treatment efficacy.
• Bloom (1984): instrumental variable (IV) approach
• Angrist, Imbens & Rubin (1996): IV+ potential outcomes
• Frangakis & Rubin (2002): generalize the AIR approach
A Widely Known Setting

• Angrist, Imbens, & Rubin, 1996.
• Random assignment to either to the treatment \((Z=1)\) or to the control condition \((Z=0)\).
• Individuals either receive \((M=1)\) or do not receive \((M=0)\) the treatment.
• Let \(M_i(1)\) denote the potential treatment receipt status for individual \(i\) when assigned to the treatment condition \((Z=1)\) and \(M_i(0)\) when assigned to the control condition \((Z=0)\).
Four Compliance Types (AIR 1996)

• Individuals are cross-classified into 4 latent compliance types \((C_i)\) based on their potential treatment receipt behavior \(M\) under both treatment conditions \((Z=0\ or\ 1)\)

\[
C_i = \begin{cases}
 n \ (\text{never-taker}) & \text{if } M_i(1) = 0, \text{ and } M_i(0) = 0, \\
 d \ (\text{defier}) & \text{if } M_i(1) = 0, \text{ and } M_i(0) = 1, \\
 c \ (\text{complier}) & \text{if } M_i(1) = 1, \text{ and } M_i(0) = 0, \\
 a \ (\text{always-taker}) & \text{if } M_i(1) = 1, \text{ and } M_i(0) = 1.
\end{cases}
\]

• The causal treatment effect for compliers is widely known as complier average causal effect (CACE).

• Principal stratification (Frangakis & Rubin, 2002) can be thought of as generalization of this strategy.
Principal Stratification
(Frangakis & Rubin, 2002)

• It aims for causal inference accounting for subpopulation heterogeneity in terms of posttreatment intermediate outcomes (mediators).

• It means stratifying individuals based on potential values of a mediator under all treatment conditions.

• As a result, the principal stratum membership is independent of treatment assignment just like pretreatment baseline covariates.

• In each principal stratum, outcome of interest can be compared across treatment conditions – principal effect. Any principal effect is a causal effect.
Identification of CACE

• We cannot identify individuals’ compliance type based on observed data

• To make up for this missing information and to make causal inference, we need to introduce external assumptions – these are also unverifiable!

• How do we come up with good assumptions?
 – Science
 – Experts opinion
 – Go with the flow (use assumptions that tend to be widely accepted)
Widely Used Identifying Assumptions
(Angrist, Imbens, & Rubin, 1996)

• To identify CACE, two identifying assumptions are employed in addition to ignorable treatment assignment and SUTVA
 • Exclusion restriction
 • Monotonicity
3. Monotonicity

• It excludes the possibility of having defiers.
• It is often a critical assumption that supports the identifiability of causal inference models (e.g., AIP).
• Considered a benign assumption in RCTs where we can control treatment receipt by study design. E.g., by disallowing individuals from receiving treatments other than those they are assigned to receive.
• It is harder to know if monotonicity is reasonable when the intermediate variable is not treatment receipt (e.g., quitting smoking).
4. Exclusion Restriction

• No effect of treatment assignment for those who would not change their treatment receipt (or mediator) in response to treatment assignment—never-takers and always-takers in the AIR example.

• Treatment assignment itself may have some effect on the outcome (e.g., may have a positive or a negative effect, in particular, on psychological outcomes).

• This effect is less likely in blinded experiments if it is hard for study participants to tell which treatment condition they are in.
Four Compliance Types (AIR 1996)

• Individuals are cross-classified into 4 latent compliance types \((C_i) \) based on their potential treatment receipt behavior \(M \) under both treatment conditions.

\[
C_i = \begin{cases}
 n \text{ (never-taker)} & \text{if } M_i(1) = 0, \text{ and } M_i(0) = 0, \\
 d \text{ (defier)} & \text{if } M_i(1) = 0, \text{ and } M_i(0) = 1, \\
 c \text{ (complier)} & \text{if } M_i(1) = 1, \text{ and } M_i(0) = 0, \\
 a \text{ (always-taker)} & \text{if } M_i(1) = 1, \text{ and } M_i(0) = 1.
\end{cases}
\]
Identification of CACE

<table>
<thead>
<tr>
<th>$Z = 1$</th>
<th>$Z = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportions</td>
<td>Proportions</td>
</tr>
<tr>
<td>π_n</td>
<td>π_n</td>
</tr>
<tr>
<td>π_c</td>
<td>π_c</td>
</tr>
<tr>
<td>π_a</td>
<td>π_a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$Z = 1$</th>
<th>$Z = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean outcomes</td>
<td>Mean outcomes</td>
</tr>
<tr>
<td>$\mu_n 1$</td>
<td>$\mu_n 1$</td>
</tr>
<tr>
<td>$\mu_c 1$</td>
<td>$\mu_c 0$</td>
</tr>
<tr>
<td>$\mu_a 0$</td>
<td>$\mu_a 0$</td>
</tr>
</tbody>
</table>
Identification of CACE (AIR 1996)

• Under monotonicity, $\pi_d = 0$. Then, π_c is derived as
 • $\pi_c = 1 - \pi_n - \pi_a$.

• Under exclusion restriction, $\mu_{n1} = \mu_{n0}$ and $\mu_{a1} = \mu_{a0}$

• Then, CACE is derived as
 \[
 \gamma_c = \frac{\mu_1 - \mu_0}{\pi_c},
 \]

 where all involved parameters are directly estimable from the observed data (e.g., $\bar{Y}_1, \bar{Y}_0, \hat{\pi}$)
Identification Strategies

• Use assumptions that are plausible based on science

• Bounding based on possible ranges of parameter values. Very unreasonable assumptions can be useful (we are very clear about the direction of violation).

• Multiple perspectives on the same unknown parameter (Jo & Vinokur, 2011)
 – Exclusion restriction: the mean potential outcome of never-takers under the control is the same as that under the treatment condition.
 – An alternative: the mean potential outcome of never-takers under the control is the same as that of compliers under the same condition.

• Utilize auxiliary information such as from covariates, multivariate (multiple, longitudinal) outcomes, etc.
The Role of Covariates in CACE estimation

• In already well identified models (non-parametrically), covariates that are good predictors of compliance
 – Increase precision (power) in the estimation of CACE (Jo, 2002)
 – Reduce bias due to the exclusion restriction violation (Jo, 2002) and due to deviation from normality (parametric approaches)

• Alternative identifying assumptions can be formulated based on pretreatment covariates
 – Additivity (no treatment*covariates interaction) assumption can replace other identifying assumptions, e.g., the exclusion restriction (Jo, 2002).
 – Sequential ignorability applied to M as used in Imai et al., 2010; Principal ignorability applied to C as used in Jo & Stuart, 2009
5. **Sequential Ignorability**: treatment receipt (M) is independent of the potential outcomes given the observed pretreatment covariates (Imai et al., 2010).

6. **Principal Ignorability**: compliance type (C) is independent of the potential outcomes given the observed pretreatment covariates (Jo & Stuart, 2009).

- 5 or 6 may replace 3 & 4 (exclusion, monotonicity)
- The relationship between 5 and 6 needs to be further studied – may help better understand the role of compliance; may serve as sensitivity analysis.
Principal Stratification and Propensity Score Methods

- Propensity score based methods mostly rely on ignorability (sequential ignorability), which makes elegant modeling of complex problems possible.

- One advantage of the principal stratification approach is in its open structure – no one set of fixed assumptions (e.g., exclusion+monotonicity, sequential ignorability).

- The two methods complement each other (e.g., Jo, 2008; Jo & Stuart, 2009; Stuart & Jo, 2012)
 - Understanding a particular problem from different perspectives
 - Sensitivity analysis
Example: JOBS II

- Job Search Intervention Study (Vinokur, Price, & Schul, 1995; Vinokur & Schul, 1997).
- A randomized field trial to improve mental health and to promote high-quality reemployment among unemployed workers.
- 54% compliance (attended 1 or more of 5 seminars).
- It turned out that study participants’ expected compliance measured at baseline was a strong predictor of actual compliance
 - “How likely or unlikely is it that you would participate in the one-week job seminar if you were offered the opportunity during the next three weeks?”
Estimation of CACE

• When CACE is non-parametrically identified, for example using the exclusion restriction and monotonicity, simpler estimation methods such as the instrumental variable approach (IV) can be used, even with covariates (see Bloom, 1984).
• Maximum-likelihood (ML) using the EM algorithm, e.g., Mplus mixture analysis feature
• Bayesian estimation method (Hirano et al., 2000)
• Propensity score methods (Jo & Stuart, 2009)
Sensitivity Analysis

• The CACE estimates can be sensitive (i.e., biased) to violation of underlying identifying assumptions (monotonicity, exclusion restriction, ignorability, etc).

• Since identification of CACE relies on assumptions that are not verifiable based on observed data, the quality of inference relies on high quality sensitivity analysis.

• This is an essential step in CACE estimation and causal modeling in general.
Plausibility of Identifying Assumptions

• Our sense of relative plausibility can be quite off.
• Seemingly more plausible assumptions may or may not result in less biased estimates (each assumption follows its own bias mechanism).
• Relying on intuitive notions of which assumptions are more or less plausible than others can be dangerous – sensitivity analysis is always important.
Sensitivity Analysis Strategies

• Closely related to identification strategies.
• Utilize alternative assumptions & estimation methods
• Utilize auxiliary information, e.g., proper priors (Hirano et al., 2000) and covariates (Jo, 2002; Jo & Stuart, 2009)
• Construct bounds – utilize science, experts’ knowledge
• Easiest ways (better than no sensitivity analysis!)
 • Monitor sensitivity of the CACE estimate to inclusion of covariates in the model
 • Use at least a couple of methods that rely on substantially different sets of identifying assumptions
Handling simultaneous complications

- In practice, several complications co-exist.
- Noncompliance and nonresponse (outcome missingness) - Frangakis & Rubin, 1999; Jo, 2008; Jo et al., 2010; Mealli et al., 2004; Grilli & Mealli, 2008; O'Malley & Normand, 2004; Peng et al., 2004.
- Noncompliance and interference (SUTVA violation) - Frangakis et al., 2002; Jo et al., 2008; VanderWeele, T.J. & Tchetgen Tchetgen, 2011; Sobel/Hudgens & Halloran extensions. This is a topic that needs more investigation.
- Conducting high quality rigorous sensitivity analysis becomes an even more challenging task.
Another challenging topic: multi-strata CACE

- Identification of causal effects becomes very difficult as the number of strata increases (more levels of treatment receipt, multiple comparison groups or treatments)
 - Identification involves more unknown quantities
 - More and stronger assumptions are usually necessary
 - The quality of causal effect estimation is likely to go down
 - Sensitivity analysis becomes very difficult

- Some possibilities
 - Rely on strong predictors of compliance (covariates)
 - Simplify - reduce the number of strata by coarsening (Jin & Rubin, 2008; Jo, Wang, Ialongo, 2009)
 - This is an area that needs much development.
Multiple strata example: 2 active treatment arms

• 3 choices under each condition – receive A, receive B, or receive neither (O).

\[C_i = \begin{cases}
1 \text{ (stratum AA)} & \text{if } M_i(A) = A, \text{ and } M_i(B) = A \\
2 \text{ (stratum AB)} & \text{if } M_i(A) = A, \text{ and } M_i(B) = B, \\
3 \text{ (stratum AO)} & \text{if } M_i(A) = A, \text{ and } M_i(B) = O, \\
4 \text{ (stratum BA)} & \text{if } M_i(A) = B, \text{ and } M_i(B) = A, \\
5 \text{ (stratum BB)} & \text{if } M_i(A) = B, \text{ and } M_i(B) = B, \\
6 \text{ (stratum BO)} & \text{if } M_i(A) = B, \text{ and } M_i(B) = O, \\
7 \text{ (stratum OA)} & \text{if } M_i(A) = O, \text{ and } M_i(B) = A, \\
8 \text{ (stratum OB)} & \text{if } M_i(A) = O, \text{ and } M_i(B) = B, \\
9 \text{ (stratum OO)} & \text{if } M_i(A) = O, \text{ and } M_i(B) = O,
\end{cases} \]

• Even after applying monotonicity and the exclusion restriction, the model is still non-identified with 3 different causal effects to identify (AB, AO, OB).
References

References

References

References