STEPPED WEDGE DESIGNS AND THE WASHINGTON STATE EPT TRIAL

Jim Hughes Professor of Biostatistics University of Washington

OPRE Alternatives to Traditional RCTs Sept 22-23, 2016

Cluster Randomized Trials

- Randomization at group level; outcome measured on individuals within the group
- Clusters may be large (cities, schools) ... or small (IDU networks, families)
- Why? Individual randomization not feasible, potential contamination, or want to measure community effect
- Usually, larger, more complex than individually randomized trial

Common Trial Designs

(a) Parallel Cluster Study

Common Trial Designs

(b) Matched Pair Parallel Cluster study

Pair	Cluster	Time	
1	1		
1	2		
2	3		
2	4		Control
3	5		
3	6		

Stepped wedge design

- Clusters are randomized as to <u>when</u> intervention is received
- All clusters receive intervention eventually

Stepped wedge design

- Time in NOT balanced between intervention and control periods
- Need to be able to measure outcome <u>on each cluster</u>, <u>at</u> <u>each time step</u> (to control for time trends)
- Cross-sectional or cohort sampling possible
 - Repeated measurements on members of a cohort may result in significant participant burden

- Acceptability (social, political, ethical) all clusters receive the intervention
- Logistical or financial cannot introduce the intervention in all units at once
- Efficiency: Units act as their own control, so (likely) fewer clusters needed
- Possible to study the effect of time on intervention effectiveness (i.e. seasonality, time since introduction)

Disadvantages

- Long time to completion
 - Increased potential for contamination
 - Increased potential for external events to influence study
 - Potential for clusters scheduled for a later start to "jump the gun"
- Relatively complex analysis
 - Intentional confounding of time and treatment must be resolved using e.g. regression analysis
 - Dependent on assumptions

WA State EPT

- Expedited partner treatment for Gc and Ct in WA state
- EPT shown to be effective in reducing <u>reinfection</u> in IRT (Golden et al., NEJM, 2005)
- EPT to be implemented throughout Washington state; logistically difficult to implement the program in all counties simultaneously
- Solution: use a SW design; (24) LHJs are the randomization units; randomize 6 per time period
- Outcome (STI) measured in sentinel sites
- Six month intervals 3 to implement, 3 to assess outcome

WA State EPT

	TIME				
	Baseline	Step 1 10/7	Step 2 6/08	Step 3 1/09	Step 4 8/09
Wave 1 (6 LHJs)		Intervention			
Wave 2 (6 LHJs)			Intervention		
Wave 3 (6 LHJs)				Intervention	
Wave 4 (5 LHJs)					Intervention

Statistical Issues - Model

Model:

$$Y_{ijk} = \mu + a_i + \beta_j + X_{ij}\theta + X_{ij}c_i + e_{ijk}$$

 $a_i \sim N(0,\tau^2)$ – variation in mean between clusters $c_i \sim N(0,\eta^2)$ – variation in tx effect between clusters $e_{ijk} \sim N(0,\sigma^2)$ – random variation

Notes:

- 1) "Standard" SW model does not include treatment heterogeneity
- 2) Model shown above assumes same time effect in all clusters
- 3) Express the variation in terms of the *coefficient of variation* (CV) between clusters τ/μ and η/μ

Statistical Issues - Power

- Power = Probability of detecting a treatment effect when the treatment really works
- Depends on ...
 - strength of treatment effect
 - number of clusters
 - number of steps
 - number participants per cluster per step,
 - variance components: σ^2 (easy to know), η^2 , τ^2 (hard to know).

Power – Variance Components

Contours of Var($\hat{\theta}$) (x 10⁵) as a function of τ and η

Power vs # waves

Power – Delayed treatment effect

Statistical Issues - Analysis

- Use regression based analysis (GEE, GLMM)
 - Controls for time trends and correlated data
 - Uses both within and between cluster info
 - Analyze cluster level means (if equal cluster sizes) or individual level data
 - Dependent on modelling assumptions
- "Vertical" analyses
 - Compare intervention and SOC at each time point and combine
 - Valid but less efficient
 - More robust?

Is the SW design the right design?

- Consider logistical and ethical issues, social and political acceptability
- SW useful for rollout/implementation studies
 - For intervention A vs intervention B, parallel cluster RCT (perhaps matched) may be better
- SW is sensitive to cluster variation in intervention effect
- SW confounds time trends with the intervention effect
 ALWAYS need to control for time trends (possibly within strata)
- Lag (time delay) in intervention effect reduces power
 - → Design step length > time lag
- Consider potential for changes in policy, other external factors not under investigator control

Recent Reference

 Hughes JP, Granston TS, Heagerty PJ. On the design and analysis of stepped wedge trials. Contemporary Clinical Trials. 45(Pt A):55-60, 2015.

Software: http://faculty.washington.edu/jphughes/pubs.html

- Excel spreadsheet for power calculations (does NOT include cluster to cluster variation in treatment effect)
- R package for power calculation (including cluster to cluster variation in treatment effect), data tabulation, plotting